
NAT L INST. OF STAND & TECH R.I.C.

A11103 71137S !
PUBLICATIONS '5*

NISTIB4626

June, 1991

Manufacturing
Systems
Integration

— QC

100

.056

4626

1991

C.2

*1 States Department of Commerce
al Institute of Standards and Technology

nufacturing Engineering Laboratory

Gaithersbiirg, MD 20899

NIST

Manufacturing
Systems
Integration

June, 1991 ^cm

mi
C.d^

Control Entity

Interface Document

M. K. Senehi

Sarah Wallace

Ed Barkmeyer

Steven Ray

Evan K. Wallace

United States Department of Commerce

Robert A. Mosbacher,
Secretary of Commerce

National Institute of Standards and Technology

John W. Lyons, Director

Table OfContents

List Of Figures ii

List of Tables iii

1.0 Introduction 1

1 . 1 Project Direction and Goals 1

2.0 Background 2

2.1 Common Memory Environment 2

2.2 Architecture 2

2.3 Administrative Hierarchy 2

2.4 Controller Tasking 4

2.4. 1 Production Plans

2.4.2 Task Execution

2.5 Error Recovery 7

3.0 Supervisory Interface 8

3.1 System States 8

3.2 Supervisory Interface Commands 10

3.3 Supervisory Interface Exchange Conventions 15

4.0 Guardian Interface 16

5.0 Task Interface 18

5.1 Task Commands 18

5.2 Conventions 19

6.0 Status Reports 19

6.1 System Status 20

6.2 Task Status 20

6.3 Guardian Status 21

7.0 Notes 22

A Administrative And Task Message Formats Used in 1990 23

B Guardian Message Formats Used in 1990 28

C Scenario of Commands to Controllers 34

D Glossary 38

List OfFigures

Figure 1 External Interfaces of an MSI Control Entity 3

Figure 2 Task Decomposition and the Task Client/Server Model 5

Figure 3 A Sample Control Hierarchy (Administrative and Task) 6

Figure 4 Administrative State Diagram for an MSI Control Entity 9

11

List Of Tables

Table 1 Administrative State Definitions 10

Table 2 Administrative Command Definitions 11

Table 3 Administrative State Tables 11

m

1. Introduction

A major activity of the National Institute of Standards and Technology (NIST) Manufacturing

Systems Integration (MSI) project^ is the development of a system architecture that incorporates

an integrated production planning and control environment. This document is concerned with de-

fining the det^s of interfaces for controllers which are incorporated into an integrated system that

confonns to the NIST MSI architectural model. A description of the NIST MSI architectural mod-

el can be found in “Manufacturing Systems Integration Initial Architecture Document” [Senehi,

forthcoming]. The purpose of this document is two fold: to document the progress and current sta-

tus of the MSI Architecture’s Control Entity Interfaces and implementation, and to provide de-

signers and implementors with specifications for an MSI Architecture compliant controller. This

document was developed by the MSI Architecture Committee^ and incorporates the consensus of

that committee as of July 1990. This work is partially supported by funding from the Navy Manu-

facturing Technology Program and NIST’s Standards Technology and Research Services (STRS).

The first section of this document gives information on pertinent aspects of the MSI architecture

and on the assumptions which have been made concerning the environment in which the system is

operating. The balance of the document contains a detailed description of the state tables for con-

trollers; commands and exchange conventions for the shutting down, starting up, emergency shut-

down, etc. of controllers; commands and protocols for the initiation, execution and termination of

tasks by controllers and details of required status reports. In the summer of 1990, the Factory Au-

tomation Systems Division at NIST developed a prototype MSI Architecture compliant controller

using the control entity interfaces defined in this document and the specific message formats

found in Appendices A-B on pages 23-33. Appendix C on page 34 presents an example scenerio

of commands and responses between control entities. The final section of this document discusses

^eas to be addressed as a result of this implementation. Appendix D on page 38 contains a glos-

sary of relevant terms.

1.1 Project Direction and Goals

The goal of the MSI project is to attack the problem of incompatible data and control processes

within a manufacturing enterprise. Despite years of development of excellent products, this prob-

lem still prevents American industry from easily building truly integrated manufacturing systems.

In particular, the sharing of information between engineering, production management and con-

trol systems is still difficult, and there are no standards specifying the interactions among control,

planning and scheduling systems. To address these problems of integration, the MSI team is de-

veloping a testbed environment which allows experimentation with integrated production man-

agement and control systems. A critical feature of this testbed is the specification of an

architecture and interfaces which allow the incorporation of commercial products and academic

systems supporting production engineering and control. The validation of this architecture will be

via a demonstration of the production of selected parts, using either actual or emulated shop floor

equipment or any combination of both. Ultimately, the architecture and interface specifications

wiU be submitted as candidate standards to the relevant national and international standards orga-

^This document was prepared by United States Government employees as part of their official duties and is,

therefore, a work of the U.S. Government and not subject to copyright

^In 1990, the Architecture Committee members were Ed Barkmeyer, Mark Luce, Steven Ray, M.K.

Senehi, Evan Wallace, and Sarah Wallace.

1

nizations.

2. Background

2.1 Common Memory Environment

This interface specification assumes a pure common memory [Libes, 1990] interface between su-

pervisor and subordinate. This means that the common memory command and status mailboxes

are persistent across process restarts. Processes have no direct means of determining the death or

restart of the supervisor or subordinate: the status of the supervisor or subordinate must be in-

ferred from the messages in the common memory mailboxes.

Common memory is an imperfect communication mechanism, meaning that not necessarily will

every mailgram inserted in a mailbox be seen by all intended recipients [Rybczynski, 1988]. What
is guaranteed is that a process reading the mailbox will see the most recently deposited mailgram.

Therefore, incremental status reporting will not work reliably when using common memory for

communication. The status report of an arbitrary manufacturing control process (controller) must

be complete, i.e. it must contain all the information pertinent to the current state of the controlled

subsystem, so that the supervisory process can miss any number of status reports and still get the

complete picture when it finally reads one. Similarly, the supervisor must be assured that the sub-

ordinate has seen the command last written in the command mailbox before it issues a new one.

As a general principle, any mailgram must contain:

• the name of the subsystem which wrote it,

• a timestamp, reflecting the time at which the mailgram was written,

• a distinct serial number (possibly provided by the Common Memory service).

Timestamps are included as tools for aiding the human operators in monitoring and debugging the

system. The synchronization of clocks across multiple systems to finer accuracy than that required

by shop level scheduling is not addressed in the MSI architecture. Fine clock synchronization is

technically difficult, and without it, a comparison of timestamps from two distinct systems may be

insufficient to determine the sequence of communication events. Therefore, the mailgram times-

tamps are not used as a message identifier in the control entity interface protocols.

2.2 Architecture

In MSI terminology, a controller is a software entity which instructs hardware or software to per-

form tasks. In order to accommodate as many types of controllers as possible, the MSI project has

identified a limited set of compatibility requirements for interfacing controllers. Integrating a con-

troller into the MSI architecture requires two types of interfaces: Supervisory (command and sta-

tus) and Task (service request and response). A third type of interface, the Guardian (console)

interface is optional and highly recommended. The possible interfaces of a control entity are

shown in Figure 1. on page 3. The following sections describe the requirements which the MSI ar-

chitecture places upon controllers in broad terms.

2.3 Administrative Hierarchy

In the MSI architecture, a controller is required to exist within an administrative hierarchy. The

2

Client Administrative
SupervisorClientClient

CM0/
STS

Guardian

MSI Control Enti

I SIS

Administrative
Subordinate

Administrative
Subordinate

Tasks

Figure 1. External Interfaces of an MSI Control Entity.

3

primary function of the administrative hierarchy is to provide reliable channels for directing the

start up and shut down of controllers. A controller may have at most one administrative supervi-

sor; it may have any number of administrative subordinates, or none at all. A subsystem consists

of a subsystem controller and all of its administrative subordinates, if any.

Currently the Administrative hierarchy of the MSI architecture consists of three logical levels:

Equipment, WorkceU and Shop.

• The Equipment level is the lov/est level to which the MSI architecture applies. Within

this level, there is a software complex which drives the physical equipment systems.

An equipment controller is responsible for the execution of tasks by an individual de-

vice or unit. It may have internal subordinate software elements which perform the

primitive control tasks, but the characteristics of these internal interfaces are not spec-

ified by the MSI architecture.

• A Workcell is a subsystem consisting of a collection of equipment viewed as a func-

tional unit. It is coordinated by a single supervisory controller designated the Workcell

controller. The grouping of equipment into workcells is based upon many factors and

is highly facility dependent. A workcell controller may control equipment controllers

directly, or may control any number of layers of workcell level controllers.

• The top level controller is the Shop Controller. The subsystem it controls consists of a

set of workcells in the manufacturing shop which are currently configured to be avail-

able. At present, the MSI project is limited to a single shop, and there is only one con-

troller at this level.

Figure 3. on page 6 shows an example of a control hierarchy. The administrative hierarchy is de-

fined by the dashed arrows. It should be noted that the administrative hierarchy remains un-

changed during the manufacturing of tasks.

2.4 Controller Tasking

The primaty function of a controller is to perform manufacturing tasks. In the MSI architecture,

controller tasking is based upon a client/server model (see Figure 2. on page 5). A client requests

tasks to be performed; the server may accept or reject tasks based on its administrative state and

its current task capabilities. As a result of this tasking model, task control is not required to follow

the administrative control paths. Figure 3. on page 6 shows an example of a control hierarchy.

The task hierarchy is defined by the solid arrows. The underlying administrative hierarchy is de-

fined by the dashed arrows. It should be noted that although the administrative hierarchy remains

unchanged during the manufacturing of tasks, the task hierarchy will be continually redefined de-

pending on which tasks are outstanding. The task interface provides for requesting new tasks and

for coordinating the activities of each controller with those of the Shop as a whole. Related details

and assumptions are explained in the following sections.

2.4.1 Production Plans

The tasks which controllers are directed to perform are specified in production plans. A produc-

tion plan is a set of time sequenced instructions for making a specific item with specific equip-

ment at specific times. MSI production plans are generated by the Production Planner from MSI
process plans by choosing appropriate branches of the process plan, selecting proper equipment

4

Task Decomposition

Figure 2. Task Decomposition and the Task Client/Server Model.

5

6

Figure

3.
A

Sample

Control

Hierarchy

(Administrative

and

Task).

and scheduling production. Production plans are hierarchical and may exist for Shop, Workcell

and Equipment levels. While the MSI architecture specifies a representation for production plans,

it permits workcell and equipment level plmis to be in varying formats based on the needs of the

individual workcell and equipment controllers. In fact, a workcell is permitted to generate its pro-

duction plans on-line.

The MSI architecture requires that the workcell controller understand the notion of checkpoint to

facilitate error handling. A checkpoint is a step in the production plan where the manufacturing

process may be halted in a safe manner without damaging either the equipment or the workpiece

and later replaced or resumed. Obviously, the start and end of a production plan will be check-

points. A less trivial example of a checkpoint would be a machining step which drills a hole. After

the hole is completed and the spindle is withdrawn, it would be safe to stop the plan at this step

and resume at a later time.

2.4.2 Task Execution

The execution of Shop level production plans is directed and monitored by independent software

agents, called Shop Level Executives (SLE). A Shop Level Executive requests tasks of workcell

controllers in accordance with its production plan. The SLE’s are responsible for ensuring that the

production plan is performed. It is not the responsibility of an SLE to monitor the health of the

controllers executing its production plan.

Lower level production plans (i.e. workcell and equipment) are executed by lower level control-

lers. The internal stmcture of lower level controllers is not mandated by the architecture. In order

to be included in the MSI architecture, a controller is characterized as being in one of three cate-

gories. The categories are based upon the controller’s ability to queue and schedule tasks:

(1) The subsystem accepts only one task at a time, and initiates the task as soon after re-

ceipt as possible. It reports status only on the last task received.

(2) The subsystem accepts and queues tasks as received, and treats a task as eligible for

initiation on receipt, but actually initiates tasks according to its own schedule. The

subsystem does not understand MSI production plans and schedules per se. For each

client, it reports status on all of that client’s task requests whenever an event relevant

to that client occurs.

(3) TTie subsystem accepts and queues tasks as received, and understands tasks as de-

scribed by MSI production plans and schedules. For each client, it reports status on

all of that client’s task requests whenever an event relevant to that client occurs, in-

cluding violation of the schedule.

2.5 Error Recovery

Although no attempt will be made here to describe error handling extensively, the MSI architec-

ture has considered the impact of errors upon the operation of the system. Two main types of er-

rors have been addressed: task failure and controller impairment.

Task failure occurs when a task fails to complete. If the failure cannot be handled locally, it is re-

ported in the task status report to the task client. Ultimately, it will be brought to the attention of

the Shop Level Controller. When appropriate, the Shop Level Controller alerts the Production

Planner to the need for replanning.The Production Planner is responsible for adjusting the sched-

7

ule. If contingency plans are required, new production plans may be generated from existing alter-

native process plans or from new process plans generated on-line by the process planner.

When a controller becomes impaired (i.e., its capabilities are diminished) it may be necessary to

intervene in ways which are not provided by the administrative supervisory path. Either the inter-

nals of the equipment or controller need to be accessed, or a subordinate of a controller needs to

be removed and replaced. The MSI architecture provides for a special interface called the Guard-

ian which accommodates these needs. From this interface it is possible to remove a (dysfunction-

al) subordinate from the system or to add a new subordinate. Upon the option of the implementor,

a Guardian may provide system specific access to the internals of the controller. This interface re-

places the front panel or console interface, with the advantage that the operator may be human,

but is not required to be, and may be an automated expert system, or a human with computer as-

sistance.

3. Supervisory Interface

The supervisory interface is administrative: it deals exclusively with subsystem states, transition

control and task service control, using an enhanced form of the UVA model described below (see

Figure 4. on page 9) [O’Halloran, 1986].

3.1 System States

Table 1. on page 10 enumerates and defines the possible subsystem states for the purpose of the

administrative supervisory interface The initial state of a subsystem, when the highest level con-

troller has been started, and the command mailbox has not yet been examined, is Down.The tran-

sitions permitted by the administrative control protocol are indicated in the corresponding state

diagram, Figure 4. on page 9. It should be noted that the administrative state diagram does not ful-

ly describe all possible causes for state transitions. In particular, external events may cause chang-

es in the administrative state.

In addition, a subsystem will have a capability index, which indicates whether the subsystem has

all capabilities to be expected from the baseline (initial) configuration or some different set of ca-

pabilities. The administrative supervisor does not understand the capabilities of the subsystem: it

interprets a change in the capability index to mean that the subsystem capabilities have changed in

such a way as to require replanning for its use. The capability index has no other intrinsic seman-

tics. Because the supervisor may miss individual changes in the subsystem capability index, it is

necessary for each value of the capability index to be distinguishable from all previous values

which have occurred since the initial state of the controller. For convenience, an integer value will

be used for this index. The capability index is initialized to zero when the subsystem is Synchro-

nized (goes from Down to Idle) and is increased by one each time any of the following occurs:

(1) a configured subordinate becomes unavailable (is deconfigured by a Detach or Ignore

command from the Guardian, or by a controller decision after a failure),

(2) a new subordinate becomes available (is Attached by command, and has successfully

started, reaching a Ready or Active state),

(3) the capability index of a subordinate changes and the subsystem controller determines

that the capabilities of the whole subsystem are thereby affected.

8

Transitional

State

Aborting

i

j

!

I

9

Figure

4.

Administrative

State

Diagram

for

an

MSI

Control

Entity.

State Definition

Down The subsystem controller has exited or has just restarted cold.

Synchronizing
The subsystem controller has received a Sync command, but has not yet synchronized

with its subordinates. This is a transition state.

Idle The subsystem is synchronized as configured, but inactive.

Starting
The subsystem was Idle, has received a Start_up command, but has not yet started all of its

configured subordinates. This is a transition state.

Ready
The subsystem is up: the controller and all of its configured subordinates have successfully

executed the Startup, but it is not accepting or processing any task requests, and it has no

tasks outstanding.

Shutting_down
The subsystem has received a Sync or Shutdown command, but has not yet shutdown aU

of its subordinates. This is a transition state.

Active The subsystem is up, accepting and processing task requests.

Pausing

The subsystem is up and accepting tasks, but it is not initiating new tasks, only bringing

running tasks to the next checkpoint. Note that for tasks which have not started, the initial

node is the checkpoint, hence they will not be permitted to start. This is a transition state.

Paused The subsystem is up. AU tasks are staUed at a checkpoint and cannot resume until the

subsystem is again Active.

Finishing The subsystem is up, but it is not accepting any new tasks. It is completing aU tasks previ-

ously issued. This is a transition state.

Terminating
The subsystem is up, but it is not accepting any new tasks, and any outstanding tasks wiU
be terminated at the next checkpoint This is a transition state.

Aborting
The subsystem is going to the Idle state. It is not accepting any new tasks, and any out-
standing tasks are Deing aborted. This is a transition state.

Table 1. Administrative State Definitions.

There will be other circumstances, unrelated to administrative control per se, which will also re-

quire the subsystem controller to change the capability index, e.g. cutter breakage. In any case, a

change in the capability index is always preceded by updates to the facility database which reflect

the actual capability changes.

3.2 Supervisory Interface Commands

The administrative command set provides for two step start up and shutdown of subsystems (to

10

prevent accidental misalignment due to persistent information in the common memory). Table 2.

on page 11 describes the administrative commands. Table 3. on page 12 defines, for each admin-

istrative state, the valid commands that a controller can receive, the action to be performed when
that command is received, the next state for that command, and the final state the controller

should be in at the completion of that command. It should be noted that
‘—

’ designates no change

of state, and a final state is only specified when there is an intermediate transition state necessary

to perform the required action associated with a command.

Command Definition

Report
Acknowledge this command and report status. This command is a No-Op used by the
supervisor to set the last command number, and in non common memory environments
to force a status report

Sync

Synchronize all configured subordinates and attempt to return the subsystem to an Idle
state. This command is used by the supervisor to initialize a Down subsystem, and to re-
initialize a running system. A controller which has finished cold start does not attempt to
synchronize wit its configured subordinates until it receives a Sync.

Start_up Bring the subsystem up to a Ready state, startup all configured subordinates.

Shutdown
Bring the subsystem down to an Idle state, shutdown all configured subordinates, bring
equipment to a safe state.

Exit Exit the control process in an orderly fashion.

Emergency_Stop
Save the equipment and get out fast. Emergency shutdown all subordinates, move
equipment to save and power down if possible, (optionally) go to Down, and exit.

Begin Begin/resume accepting task requests.

Finish Complete all existing tasks, but stop accepting new task requests.

Pause

Continue accepting Task requests, but don’t initiate new tasks, and pause all out-

standing tasks at the next checkpoint. Then pause all configured subordinates. The
object is to get activity in the subsystem to cease temporarily

Terminate
Stop accepting new tasks, stop each outstanding task at the next (or current)

checkpoint, and treat it as teiminated.

Table 2. Administrative Command Definitions.

An MSI Architecture compliant controller must support all administrative commands except

Pause. Appendix A on page 23 contains the description of the command message formats for the

administrative interface used in the 1990 MSI Architecture prototype controller.

11

Down
Command Next State Comments Final State

Report — No change, always acknowledge.

Sync Synchronizing
Issue Sync to subordinates, and go to Idle when all

subordinates are Idle. Idle

Emergency_Stoi Down
Emergency shutdown all subordinates, move equipment to

save and power down if possible. Optionally go to Down,
and exit

Synchronizing

Command Next State Comments Final State

Report — No change, always acknowledge.

Sync — Acknowledge Only.

imergency_StOF Down
Emergency shutdown all subordinates, move equipment to

save and power down if possible. Optionally go to Down,
and exit

Idle

Command Next State Comments Final State

Report — No change, always acknowledge.

Sync Acknowledge Only.

Start_up Starting
Issue Start_up to subordinates, and go to Ready when all

subordinates are Ready. Ready

Shutdown — Acknowledge Only.

Emergency_Stop Down
Emergency shutdown all subordinates, move equipment tc

save and power down if possible. Optionally go to Down,
and exit.

Exit Down Go to Down optionally, and exit.

Starting

Command Next State Comments Final State

Report — No change, always acknowledge.

Start_up — Acknowledge Only.

Sync Shutting_Down
Issue Sync to all subordinates, and go to Idle when all

subordinates are Idle.
Idle

Emergency_Stoj Down
Emergency shutdown all subordinates, move equipment tc

save and power down if possible. Optionally go to Down,
and exit

Table 3. Administrative State Tables.

12

Ready
Command Next State Comments Final State

Report — No change, always acknowledge.

Start_up — Acknowledge Only.

Begin Active Do not remove any tasks in the task queue.

Finish — Acknowledge Only.

Terminate — Acknowledge Only.

Shutdown Shutting_Down
Shutdown all subordinates, and go to Idle when all

subordinates are Idle.
Me

Sync Shutting_Down
Shutdown all subordinates, and go to Idle when all

subordinates are Idle. Me

Emergency„Stop Down
Emergency shutdown all subordinates, move equipment
to save and power down if possible. Optionally go to

Down, and exit.

Active

Command Next State Comments Final State

Report — No change, always acknowledge.

Begin — Acknowledge Only.

Terminate Terminating

Stop accepting new tasks, stop each outstanding task at

the next checkjx)int. Go to Ready when there are no
more outstandmg tasks.

Ready

Finish Finishing
Complete all outstanding tasks if possible and then go
to Ready when there are no more outstanding tasks.

Ready

Pause Pausing
Continue accepting task requests, but don’t initiate new
tasks. Pause all outstanding tasks at the next checkpoint
Go to Paused. Then pause all configured subordinates.

Paused

Sync Aborting
Abort all tasks, then go to Shutting_Down, shutdown all

subordinates, go to Me when all subordinates are Idle.
Me

Emergency.Stoi Down
Emergency shutdown all subordinates, move equipment
to save and power down if possible. Optionally go to

Down, and exit.

Finishing

Command Next State Comments Final State

Report —

^

No change, always acknowledge.

Begin Active Do not remove any tasks in t he task queue.

Terminate Terminating

Stop accepting new tasks, stop each outstanding task at

the next chec^oint. Go to Ready when there are no more
outstanding tasks.

Ready

Finish Finishing Acknowledge Only. Ready

Sync Aborting
Abort all tasks, then go to Shutting_Down, shutdown all

subordinates, go to Me when all subordinates are Idle.
Me

Emergency_Stof Down
Emergency shutdown all subordinates, move equipment
to save and power down if possible. Optionally go to

Down, and exit.

Table 3. continued.

13

Ternunating

Command Next State Comments Final State

Report — No change, always acknowledge.

Terminate — Acknowledge Only.

Sync Aborting
Abort all tasks, then go to Shuttmg„Down, shuMown aU
subordinates, go to Me when all subordinates are Idle.

Me

Emergency_Stoi Down
Emergency shutdown aU subordinates, move equipment tc

save and power down if possible. Optionally go to Down,
and exit

Pausing

Command Next State Comments Final State

Report No change, always acknowledge.

Begin Active Do not remove any tasks in the task queue.

Terminate Terminating

Stop accepting new tasks, stop each outstanding task at th

next checkpoint. Go to Ready when there are no more
outstanding tasks.

1

Ready

Pause — Acknowledge Only.

Sync Aborting
Abort all tasks, then go to Shutting_Down, shutdown all

subordinates, go to Me when all subordinates are Me. Idle

Emergency_Stop Down
Emergency shutdown all subordinates, move equipment tc

save and power down if possible. Optionally go to Down,
and exit

Paused

Command Next State Comments Final State

Report — No change, always acknowledge.

Begin Active Do not remove any tasks in the task queue.

Tenninaie Terminating

Stop accepting new tasks, stop each outstanding task at th

next checkpoint. Go to Ready when there are no more
outstanding tasks.

Ready

Pause —

-

Acknowledge Only.

Sync Aborting
Abort all tasks, then go to Shutting__Down, shutdown all

subordinates, go to Me when all subordinates are Me. Idle

Emergency_Stoi Down
Emergency shutdown all subordinates, move equipment tc

save and power down if possible. Optionally go to Down,
and exit.

Table 3. continued.

14

Aborting

Command Next State Comments Final State

Report — No change, always acknowledge.

Sync — Acknowledge Only.

Emergency_StoF Down
Emergency shutdown all subordinates, move equipment to

save and power down if possible. Optionally go to Down,
and exit.

Shutting_Down

Command Next State Comments Final State

Report — No change, always acknowledge.

Sync — Acknowledge Only.

Shutdown — Acknowledge Only.

Emergency_Stoi 1 Down
Emergency shutdown all subordinates, move equipment to

save and power down if possible. Optionally go to Down,
and exit.

Table 3. continued.

3.3 Supervisory Interface Exchange Conventions

The supervisory interface is operated one command at a time, that is, the supervisor does not issue

the next command until the subordinate’s system status report shows that it has received the cur- -

rent command (by having the correct last command identifier). The subordinate responds to each

command on receipt (i.e., accepts or rejects the command after examining the state tables). The

transition states are provided to enable the subordinate to report receipt of and reaction to a com-

mand without having reached the desired final state (completion of the command). Once an ad-

ministrative command is accepted, it is not logically possible for it to fail subsequently, although

it may never complete.

Example: A subsystem in an Idle state receives and accepts a Start_up command and enters the

Starting state. It remains in the Starting state until all of its configured subordinates reach Ready.

If one of the subordinates fails to reach Ready, the subsystem stays in the Starting state indefinite-

ly. If the subsystem controller is told or determines that the still un-Ready subsystem should be

treated as Unavailable, it deconfigures the offending subordinate and thereby becomes Ready, it

updates the database to reflect the loss of the subordinate, and changes the capability index. Nei-

ther the endless Starting state, nor the transition to Ready with a change in the capability index, is

a failure of the Start_up command from the point of view of the subordinate. The supervisor may
make some qualitative judgement of these situations, but there is no formal failure of the com-

mand.

The supervisor does not interpret the state of the subsystem as it appears in the status report until

the last command identifier reflects the last command issued by the supervisor. This avoids misin-

terpretation of intermediate states which result from asynchronous generation of commands and

15

status reports.

There are three exceptions to the rule that the supervisor never sends a new command until the

previous command has been acknowledged:

(1) The initial command from the supervisormay be, and usually is , sent without any con-

cern for prior commands; the initial command should be Report or Sync.

(2) A Sync command, the function of which is to force the subordinate into an Idle state

regardless of its current state, is not in any way dependent on the supervisor correctly

understanding the previous state of the subordinate, and may be issued at any time,

whether or not the subordinate has acknowledged the previous command.

(3) An Emergency_stop command should never be delayed for any reason.

4. Guardian Interface

The Guardian interface provides the console interface to a control entity, allowing external moni-

toring and intervention in the otherwise automatic operation of the control entity.

The Guardian interface includes all capabilities of the supervisory interface, including all admin-

istrative commands, and the Guardian exchange conventions are identical to that of the superviso-

ry interface. The Guardian has priority over the supervisory interface, to allow external override

of the automatic transition control. This capability should never by exercised while the supervisor

is still functioning.

The Guardian interface also includes two additional command sets: the configuration control

command set, given below, and a private command set to change parameters and modes of opera-

tion for a particular kind of subsystem. The status portion of the Guardian interface is described in

section 6.3 on page 21. Appendix B on page 28 contains the description of the command and sta-

tus message formats for the Guardian interface used in the 1990 MSI Architecture prototype con-

troller.

Configuration commands:

The configuration command set permits the Guardian to direct the subsystem to add and delete

subordinate control entities, in order to facilitate recovery of failing components and continuation

without them. When a configuration change takes place in response to a Guardian command, the

capability index is incremented and this is reported through the supervisory interface.

Ignore (subordinate, location)— deconfigure an existing subordinate and disconnect from

it immediately. This command allows the Guardian to direct a subsystem to recov-

er from a hung state caused by a defunct subordinate.

• From Down, reject: protocol violation.

• From any other state, if the named subordinate is not configured, reject: no

such subordinate.

• From Synchronizing, deconfigure the named subordinate, update the capability

index, disconnect the command path and remain Synchronizing until all re-

16

maining configured subordinates are Idle.

• From Idle or Ready, deconfigure the named subordinate, update the capability

index, disconnect the command path and do not change state.

• From Starting, deconfigure the named subordinate, disconnect the command
path, update the capability index and remain Starting until all remaining con-

figured subordinates are Ready.

• From Shutting_Down, deconfigure the named subordinate, update the capabil-

ity index, disconnect the command path and remain Shutting_Down until all

remaining configured subordinates are Idle.

• From any other state, abort any tasks which involve the named subordinate,

deconfigure it, update the capability index and disconnect the command path,

and do not change state.

Attach (subordinate, location)— configure a new subordinate.

• From Down, Synchronizing or Shutting_Down, reject: protocol violation.

• From any other state, if the named subordinate is already configured, acknowl-

edge only.

• From Idle, if the named subordinate is new, configure the named subordinate,

and synchronize with it, and remain Idle until the newly configured subordi-

nate is Idle.

• From Starting, if the named subordinate is new, configure the named subordi-

nate, synchronize with it, and attempt to Start it when it is Idle, remain Starting

until all configured subordinates, including the new one, are Ready.

• From any other state, if the named subordinate is new, configure the named
subordinate, synchronize with it, and attempt to Start it when Idle, and incre-

ment the capability index when all configured subordinates, including the new
one, are Ready.

Detach (subordinate, location) — deconfigure an existing subordinate and disconnect

from it in an orderly way.

• From Idle or Ready, if the named subordinate is not configured, reject: no such

subordinate.

• From Idle, deconfigure the named subordinate, disconnect the command path,

update the capability index, and remain Idle.

• From Ready, deconfigure the named subordinate, disconnect the command
path, update the capability index, and remain Ready.

• From any other state, reject: protocol violation.

17

5. Task Interface

The task interface deals with the delivery and execution of actual subsystem tasks, or what was

called manufacturing control in the AMRF [Albus, 1981]. The associated aspect of the status re-

port is the Task status. An MSI controller considers all task requests to be instances of the single

Execute command below. However, it abides by the protocol type selected for the particular sub-

ordinate, and interprets the plan accordingly. The execution of tasks may be serial or parallel, de-

pending on the ability of the controller to schedule and execute tasks. See section 2.4.2 on page 7

for details of the protocols. Appendix A on page 23 contains the description of the command and

status message formats for the task interface used in the 1990 MSI Architecture prototype control-

ler.

5.1 Task Commands

Report

Acknowledge this command and report task status for the requesting client. This

command is a No-Op used by the client to force a task status report.

Execute (task-id, task-activity, node-name, parameter-list)

Used to initiate any new task. The parameters are:

• task-id = an identifier for the task invented by the supervisor, guaranteed

unique within the context of this session of client/server communication, and

used to refer to the task in status reports and subsequent commands.

• task-activity = either a work element or an ordered pah* consisting of plan-id

and plan-version.

A work element is a type of task which is meaningful to the subordinate, and

possibly to the supervisor. The ordered pair {plan-id, plan-version} consists of

the database keys for the detailed task description, nominally an ALPS (A Lan-

guage for Process Specification) production plan, but could be any form used

by the subsystem, including a process plan for a system which does dynamic

production planning [Catron, 1991].

• node-name = a descriptive name attached to the task by the Production Planner

and used by human operators for monitoring and debugging.

• parameter-list = names and values of information units which are known only

at execution time. In the case of dynamic production planning this would in-

clude quantities, workpiece ids, tooling parameters, etc. In the case of previ-

ously defined production plans, parameters might include material handling

information.

Drop_report (task-id)

Remove the designated task from the status report. This should only be used for

plans which have reached a terminal state.

Pause (task-id)

18

Used to stall operations, for example during replanning. The task should be paused

at the next Checkpoint.

Resume (task-id)

Used to resume a previously suspended task.

Terminate (task-id)

Stop and treat the plan as finished at the next Checkpoint.

Abort (task-id)

Stop the plan as soon as possible without damaging the equipment; damaging the

workpiece is acceptable. To be used to recover from some anomalous situations, in

particular hung tasks.

5.2 Conventions

When a subordinate receives an Execute command, it always creates a new task, and adds it to the

task status report. If the task is unacceptable to the subsystem, the state of the task is rejected,

which is a terminal state. Otherwise, the task goes into one of the nonterminal states while the

subordinate begins planning and executing the task. Thereafter, the subordinate autonomously

changes the state of the task as it executes it, until the task reaches a terminal state.

The combination (source, task-id) must always be unique in the subordinate. Once created, a task

is current in the subordinate, regardless of state, until the subordinate receives a Drop_ report

command for that task.

All other task management commands—^Pause, Resume, Terminate, Abort, Drop_report—affect

only tasks which have been previously created by an Execute command from the same source.

Each of these commands only affects the state of the named task and the further handling of that

task in the subsystem. If a subordinate receives a task management command for an unknown
task-id, it must add the task to the task status report with a task status of rejected, and rewrites its

current task status in the status mailbox.

Unlike supervisory commands, task commands can (potentially) come from more than one

source, and task commands do not get explicit responses. The effect of a task command is to

change some element of the subordinate’s task status report (see Section 6.2). The task source

therefore deduces receipt of the command by the change in the status report In particular,

• the source determines receipt of Execute by appearance of the task in the status report.

• the source determines receipt of Drop_report by disappearance of the task from the

status report.

• the source determines receipt of Pause, Resume, Terminate, Abort by a change in the

value of the task management state.

6. Status Reports

The complete status of a subsystem consists of three logically distinct classes of information: sys-

19

tem status elements, task status elements, and operational status elements. Every subsystem gen-

erates:

• a Guardian status report, comprising all of the above

• an administrative status report, consisting only of the system status elements

• one task status report for each client, comprising tiie task status elements for all tasks

originated by that client.

The remainder of this section describes the individual status elements by type. Appendices A and

B contain a description of the command and status message formats for the administrative, task

and Guardian interfaces used in the 1990 MSI Architecture prototype controller.

6.1 System Status

These elements describe the administrative state of the subsystem. They include:

Subsystem state (see Section 3.1)

Capability index: number of changes made to the capabilities since subsystem start up

Last command: for last administtative command received from the supervisor/Guardian

— command identifier (sequence number)
—- response code (accepted, or rejection code).

The last command information in the administrative status report refers to the last command from

the supervisor, while the last command in the Guardian status report refers to the last command
from the Guardian.

6.2 Task Status

These elements describe the tasks which have been given to the subsystem and their current state

of execution. For each task in the subsystem, the information units include:

Task source, name of system supplying the task

Task identifier, as given by the source

Management state of task, one of:

• Normal— last management command for this task was Execute or Resume
task

• Pausing— last management command for this task was Pause task

• Terminating— last management command for this task was Terminate task

• Aborting— last management command for this task was Abort task

On schedule (yes/no/unknown)

Nominal/actual initiation time

20

Nominal/actual completion time

Last checkpoint reached, if applicable

Current state of task, one of:

• rejected = task is unacceptable to the subsystem (terminal).

• activated = task is currently executing (nonterminal).

• suspended = task is waiting at a checkpoint for a resource, an external event, or

a Resume task (nonterminal).

• completed = task is finished and no errors occurred (terminal).

• terminated = task is terminated at a checkpoint, stopped by supervisor com-

mand or a problem detected in the subsystem, even though it did not finish (ter-

minal).

• aborted = task was terminated as expediently as possible by direction of super-

visor, or unrecoverable problem in the subsystem (terminal).

Output parameters, if applicable.

6.3 Guardian Status

The Guardian status contains all the elements of the administrative status and task status report

The task status component contains three additional fields:

Detail Codes: one or more codes for the detailed status of the task, include failure codes,

holding codes, event/resource identification codes, etc.

Messages: one or more optional console display messages corresponding to the codes

Assigned resources: names of immediate subordinates involved in the task.

Additionally, the Guardian status contains information describing the status of elements of the

particular subsystem which are only meaningful in the context of this (kind of) subsystem and re-

quire knowledge of the internal functions of the subsystem to be useful. (This type of information

is known as operational status and is often useful for console display.) There are two kinds of ele-

ments in an operational status report: configuration elements and specialized elements.

Configuration elements include for each configured subordinate:

• the subsystem name,

• the subsystem state, as perceived by the supervisor, and

• the timestamp of the last received status report.

Specialized elements (sometimes called front panel information) are defined by the subsystem, al-

though some MSI Architecture standards may be developed for elements to be included for a giv-

en subsystem type. For a machine tool, this includes such information as coolant levels, current

spindle speed, feed rate, tool in the spindle, tools in the drum/carriage, etc. For a robot, this in-

cludes joint positions, gripper configuration, current end of arm coordinates, current goal coordi-

21

nates, etc. It may also include detailed information about position and operation in the local form

of process plan, e.g. numerical code, robot programs, etc.

7. Notes

1. A subsystem cannot do anything about a failed supervisor. It is therefore pointless for a sub-

system to attempt to diagnose the health of the supervisor, whether by meaningless commands,

protocol violations, or time-outs. The subsystem’s job is to keep its own house in order, no matter

what it gets, or doesn’t get, in the command mailbox.

2. A subsystem can and should diagnose the health of its configured subordinates, and it is appro-

priate to time-out responses when running in reM time. Unfortunately, this creates some problems

when running in rapid simulated time. This problem stiU needs to be researched.

8. Issues to Be Addressed in the Future

In 1990, the Factory Automation Systems Division at the National Institute of Standards and

Technology developed a prototype MSI Architecture compliant controller using the conttol entity

interfaces defined in this document. As a result of this prototype, several issues with the interfaces

were discovered. The resolution of these issues is a primary focus of continuing work within the

MSI project.

• Within the task command interface, there is no way for a task server to reject an in-

valid request pertaining to an active task. There is no way for a task server to reject a

Resume request for a task that is not currently in the Suspended state. There is also no

way for a task server to reject a Drop„report request for a task that is not currently in a

terminal state.

• There does not currently exist an automated way to normally or abnormally shutdown

a control hierarchy (or subsystem). This is so because neither the Terminate nor the

Finish commands propagate to subordinate controllers, yet those are the only valid

transitions from the Active to the Ready state. As a result, each controller must be in-

dividually and explicitly issued a Terminate or Finish command to transition to Ready.

Only then can a Shutdown command (which does propagate) be issued to bring the

control hierarchy to the Idle state. It should be noted that allowing the Terminate and

Finish commands to propagate to subordinates is not an adequate solution: consider

the case where in order to Finish or Terminate a task at one level in the hierarchy, a

task request must be issued to a subordinate that has already Finished or Temunated its

outstanding tasks and is no longer accepting new ones.

• The notion of checkpoint is not well defined. A checkpoint is defined as a step in the

production plan where the manufacturing process may be halted in a s^e manner

without damaging either the equipment or the workpiece and later replaced or re-

sumed. A task server is required to checkpoint a task upon receiving the task com-
mands Pause or Terminate or upon receiving the administrative commands Pause or

Terminate. Checkpointing a task at a lower level in the control hierarchy necessarily

means that a higher level controller (namely the task client) is in the middle of a man-
ufacturing step, and is not considered checkpointed on that task. The current meaning

of checkpoint is not well defined for any level other than the Equipment Level.

22

AppendixA
Administrative And Task Message Formats Used in 1990

The format of an MSI message in a mailbox is an ASCII string where curly braces surround mes-

sage objects and elements within these objects are delimited with commas. These elements may
themselves be compound objects with their own elements. Spaces may be used for readability

only directly following commas.

All messages have the form:

{originating subsystem name, timestamp, mailgram sequence number, {data}}

Where:

originating subsystem name is the MSI name for the source controller,

timestamp is a string in the following form:

4 digit year, 2 digit month, 2 digit day, 2 digit hour, 2 digit minute, and 2 digit second, all

concatenated together in one string (all digits are decimal).

mailgram sequence number is an ascii representation of an unsigned hexadecimal num-

ber less than 2^^ or IOOOOOOOO16 .

The following sections describe the data portion of the above message format.

Administrative commands

Administrative commands have the following format:

{command id, command}

Where:

command id is an ascii representation of an unsigned hexadecimal number less than 2^^ or

IOOOOOOOO16,

command is one of the following:

REPORT

SYNC

START_UP

BEGIN

PAUSE

FINISH

TERMINATE

23

SHUT_DOWN

EXIT

ESTOP

An example of an administrative command is {45, SYNC}.

Administrative status

Administrative status messages have the following format:

{admin state, last cmd id, response code, capability index]

Where:

admin state is one of the following:

DOWN
SYNCHRONIZING

IDLE

STARTING

READY

ACTIVE

PAUSING

PAUSED

TERMINATING

FINISHING

SHUTTING.DOWN

ABORTING

last command id is an ascii representation of an unsigned hexadecimal number less than

232orl00000000i6.

response code is zero when the last command is accepted, and some nonzero 8 byte hexa-

decimal number response code otherwise.

capability index is an unsigned 8 byte hexadecimal value representing a number of less

than 2^^.

An example of an administrative status message is (SYNCHRONIZING, 0, 45, 0).

Task requests

Task requests have the following format:

24

{task commandy task id, list ofparameters which vary with command}

Where:

task command is one of the following:

REPORT

EXECUTE

DROP_REPORT

PAUSE

RESUME

TERMINATE

ABORT

task id is an unsigned hexadecimal value representing a number of less than 2^^. It is

unique only for a given task requestor.

parameter lists for their respective task commands are as follows:

REPORT— NULL

EXECUTE— (task activity, node name, parameter list)

Where:

task activity is either a work element or a compound object of the form (plan-id,

plan-version) y where work element is a primitive command, only specified when
the task server is a primitive equipment controller, plan-id is a string which identi-

fies a process or production plan to be used by the task server, and plan-version is

a number indicating the version of the plan identified by plan-id. The compound
element {plan-id, plan-version) is specified when the task server is a category 2 or

category 3 controller (i.e., understands the MSI notion of process plan).

node name is a string passed by task requester for human task tracking purposes.

parameter list is a variable length data object supplying parameters for the speci-

fied plan or work element. This list is an alternating sequence of parameter name,

parameter object where parameter object could be a list.

DROP_REPORT— NULL

PAUSE— NULL

RESUME— NULL

TERMINATE— NULL

ABORT— NULL

Examples of task requests are:

{EXECUTE, 1, {{shuttle_plan,l). Make Shuttle, (PARTS, (8,27})}}

(EXECUTE, 2, { {block_plan,l }, Make Block, (PARTS, {2,38} } }

}

25

{REPORT,!,NULL}

{DROP_REPORT, 1,NULL)

{PAUSE,1,NULL}

{RESUME,1,NULL)

{TERMINATE,2,NIJLL)

{ABORT,l,NULL}

Task responses

Task response messages have the following format:

((task source, task id, task state, management state, on schedule flag, (nom, starting

time, actual starting time, nom, completion time, actual completion time}, last checks

point, additionalparameters), (next task report in sameform}}

Where:

task source is the name of the task requester from the originating subsystem name in the

basic mailgram format.

task id is an unsigned hexadecimal value representing a number of less than 2^^. It is

unique only for a given task requestor.

task state is one of the following:

REJECTED

ACTIVATED

SUSPENDED

COMPLETED

TERMINATED

ABORTED

task management state is one of the following:

NORMAL

PAUSING

TERMINATING

ABORTING

on scheduleflag is encoded as a 0 for yes, a 1 for no, and NULL for unknown, and desig-

nates whether the task is currently on schedule or not.

nominal starting time, actual starting time, nominal completion time, actual completion

time are of the following format:

26

4 digit year, 2 digit month, 2 digit day, 2 digit hour, 2 digit minute, and 2 digit sec-

ond, all concatenated together in one string (all digits are decimal). Any time field

can be NULL if that field is currently unknown. If all fields are unknown, then the

entire compound time object is NULL.

last checkpoint is the string representation of the node number of the last completed node

in the process or production plan that is a valid checkpoint node. The node numbers within

the process or production plan are specified by the process planner.

additional parameters is an optional compound object which contains a parameter list in

the alternating name, value form, providing any return values associated with a plan as

well as messages for debugging at the next level. This field is NULL if there are no param-

eters.

Additional reports in the above response form would be included in a task report when there is

more than one task being serviced for a given requestor.

An example of a ONE response report is: {SLE3, 1, ACTIVATED, NORMAL,
0,(19900721130000, 19900721130500, 19900721131000, NULL}, 3, NULL).

An example of a TWO response report is: {{VWSOl, 1, ACTIVATED, NORMAL, 0,

(19900721130000, 19900721130500, 19900721131000, NULL), NULL), (VWSOl, 3, ACTI-
VATED, NORMAL, 0, (19900721130500, NULL, 19900721131500, NULL), 0, NULL) }.

27

Appendix B
Guardian Message Formats Used in 1990

The format of an MSI message in a mailbox is an ASCII string where curly braces surround mes-

sage objects and elements within these objects are delimited with commas. These elements may
themselves be compound objects with their own elements. Spaces may be used for readability

only directly following commas.

All messages have the form:

{originating subsystem name, time stamp, mailgram sequence number, {data}}

Where:

originating subsystem name is the MSI name for the source controller,

time stamp is a string in the following form:

4 digit year, 2 digit month, 2 digit day, 2 digit hour, 2 digit minute, and 2 digit sec-

ond, all concatenated together in one string (all digits are decimal).

mailgram sequence number is an ascii representation of an unsigned hexadecimal num-
ber less than 2^^ or IOOOOOOOO15.

The following sections describe the data portion of the above message format.

Guardian commands

Guardian commands have the following format:

{command id, guardian command, parameter list}

Where:

command id is an ascii representation of an unsigned hexadecimal number less than 2^^ or

IOOOOOOOO16

command is one of the following:

REPORT

SYNC

START.UP

BEGIN

PAUSE

FINISH

TERMINATE

28

SHUT_DOWN

EXIT

ESTOP

IGNORE <configuration commanci>

ATTACH <configuration coinmand>

DETACH <configuration command>

parameter list is used for configuration commands only and is a list of subordinates by

subsystem name, otherwise parameter list is NULL.

Examples of Guardian commands are:

{45, IGNORE, (VWSOl, MHSOl}

)

{8e, ATTACH, {VWS02, MHS02)

)

(13, SYNC, NULL}

Guardian Status

Guardian status messages have the following format:

{admin state, last guardian command id, response code, (subordinate list}, (task re-

sponse list), (operational status list}}

Where:

admin state is one of the following:

DOWN
SYNCHRONIZING

IDLE

STARTING

READY

ACTIVE

PAUSING

PAUSED

TERMINATING

FINISHING

SHUTTING.DOWN

ABORTING

last guardian command id is an ascii representation of an unsigned hexadecimal number
less than 2^^ or IOOOOOOOO16.

29

response code is zero when the last command is accepted, and some nonzero 8 byte hexa-

decimal number response code otherwise.

subordinate list is a compound element containing the following information for each

subordinate: (subordinate name, subordinate state, time stamp of last status}

Where:

subordinate name is the MSI name for the subordinate.

subordinate state is one of the same list as admin state above.

timestamp is of the following format:

4 digit year, 2 digit month, 2 digit day, 2 digit hour, 2 digit minute, and 2 digit sec-

ond, all concatenated together in one string (all digits are decimal).

task response list is a compound element having the following format: {{task source, task

id, task state, management state, on schedule flag, {nom, starting time, actual starting

time, nom. completion time, actual completion time), last checkpoint, additionalparam-

eters), {next task report in sameform}}

Where:

task source is the name of the task requester from the originating subsystem name
in the basic mailgram format.

task id is an unsigned hexadecimal value representing a number of less than 2^^. It

is unique only for a given task requestor.

task state is one of the following: . . .

REJECTED

ACTIVATED

SUSPENDED

COMPLETED

TERMINATED

ABORTED

task management state is one of the following:

NORMAL

PAUSING

TERMINATING

ABORTING

on scheduleflag is encoded as a 0 for yes, a 1 for no, and NULL for unknown, and

designates whether the task is currently on schedule or not.

nominal starting time, actual starting time, nominal completion time, actual

30

completion time are of the following format:

4 digit year, 2 digit month, 2 digit day, 2 digit hour, 2 digit minute, and 2 digit sec-

ond, all concatenated together in one string (all digits are decimal). Any time field

can be NULL if that field is currently unknown. If all fields are unknown, then the

entire compound time object is NULL.

last checkpoint is the string representation of the node number of the last complet-

ed node in the process or production plan that is a valid checkpoint node. The node

numbers within the process or production plan are specified by the process planner.

additional parameters is an optional compound object which contains a parameter

list in the alternating name, value form, providing any return values associated

with a plan as well as messages for debugging at the next level. This field is NULL
if there are no parameters.

Additional reports in the above response form would be included in a task report when there is

more than one task being serviced for a given requestor.

operational status list is a compound element containing an alternating sequence of type and val-

ue, reporting details of the internals of a subsystem. This is the means by which front panels are

exposed to a human operator.

The one known operational status type is a “task_list”. The elements in a task_list are formatted as

follows: (task source, task id, task activity, (node list}}.

Where:

task source is the task client associated with this task.

task id is the identifier used by the client for this task.

task activity is the “task” requested by the client with the EXECUTE command. Its value

is the node name element from the EXECUTE command. It is a human readable/under-

standable element.

node list is a compound element describing the status of each currently active step in the

process or production plan. It has the following format: (node number, node name, node

status, [subtask}}

Where:

node number is decimal number uniquely identifying a node (step) in the process

or production plan being executed by the subsystem.

node name is a name for the node just enumerated.

node status is a character string indicating the state of the activity associated with

the node. Its value is one of the following:

NEW

SLEEPING

WATTING

31

BUSY

DONE

subtask is a compound element describing a subordinate task if there is one associ-

ated with this node. It has the following format: {task server, task id, task status,

management status}.

Where:

task server is the MSI name of the subordinate executing the task.

task id is the identifier used by the controller executing the node for this

task requested from its subordinate.

task status is the status returned by the subordinate, and is one of the fol-

lowing:

REJECTED

ACTIVATED

COMPLETED

TERMINATED

PAUSED

ABORTED

management status is the management status returned by the subordinate

for the task, and is one of the following:

NORMAL

PAUSING

TERMINATING

ABORTING

Examples of Guardian status reports are:

{ACTIVE, 0, 0, {{MHSOl, ACTIVE, 19901002131412), (CDWSOl, ACTIVE,
19901002131413), (VWSOl, ACTIVE, 19901002131415)), {{shop-oversight, 110,

COMPLETED, NORMAL, 0, {19901002090000, 19901002090000, 19901002131600,

19901002131905), 18, NULL), {shop-K)versight, 112, COMPLETED, NORMAL, 1,

{19901002110000, 19901002110000, 19901002151500, 19901002144959), 12, NULL),
{shop-oversight, 120, COMPLETED, NORMAL, 1, {19901002130000,

19901002131520, 19901002162000, 19901002161642), 10, NULL), {shop-oversight,

122, ACTIVATED, NORMAL, 1, {19901002015000, 19901002150107,

199010020170000, NULL), 6, NULL)), {task_list, {{shop-oversight, 122, {make-shut-

tle), { { 10, machine-second-cut, NEW, NULL)))))

)

{ACTIVE, 0, 0, {{VMILLCOl, ACTIVE, 19901004170855),{VWSU4K01, ACTIVE,
19901004180000)), {{VWSU4K01, 197, COMPLETED, NORMAL, 0, NULL, 3,

32

NULL))}

{ACTIVE, 0, 0, ((VMILLCOl, ACTIVE, 19901004170855),(VWSU4K01, ACTIVE,
19901004180000} }, NULL, NULL)

(DOWN, 0, 0, NULL, NULL, NULL)

)

(ACTIVE, 0, 0, {{VWSOl, ACTIVE, 19901004170329), (MHSOl, ACTIVE,
19901004171256), (CDWSOl, ACTIVE, 19901004171100)}, {{shop-oversight, 110,

ACTIVATED, NORMAL, 0, (19901004142000, 19901004142210, 19901004200000,

NULL), 14, NULL), (shop-oversight, 112, ACTIVATED, NORMAL, 1,

(19901004170000, 19901004170000, 19901004191600, NULL), 7, NULL), (shop-

oversight, 114, ACTIVATED, NORMAL, 1, (19901004182000, 19901004181815,

19901004195600, NULL), 2, NULL}), {task_list, {{shop-oversight, 110, (make-shuttle,

1), {{6, machine-first-cut, BUSY, (VWSOl, 197, ACTIVATED, N ORMAL)}, (13, de-

Uver-lru, WATTING, (MHSOl, 225, SUSPENDED, NORMAL}), (14, Join, BUSY,
NULL))}, (shop-oversight, 112, (make-block, 1), {{4, Deburr-block, BUSY,
(CDWSOl, 158, ACTIVATED, NORMAL)))}, (shop-oversight, 114, (make-shuttle,

1), {{2, machine-second-cut, WATTING, (VWSOl, 118, SUSPENDED, NOR-
MAL}))})}

33

Appendix C
Scenario ofCommands to Controllers

Thefollowing example illustrates the normal initialization procedure.

Shop Level Administrative Supervisor

{100, SYNC}

{101,START_UP}

(102, BEGIN}

Workcell Controller

System„status message format:

(admin state, last cmd id, response code,

capability index}

{DOWN, 0,0,0}

{SYNCHRONIZING, 100,0,0

}

{IDLE,100,0,0}

{STARTING, 101,0,0}

{READY, 101,0,0}

{ACTIVE, 102,0,0}

Thefollowing example illustrates the normal tasking procedure.

Shop Level Executive Workcell Controller

Task requests have the following format:

(task command, task id, list ofparameters

which vary with command)

{EXECUTE, 34, { {Get-shuttle-l-data, 01 },

get-shuttle-data, {PARTS, {AC443, AQ972,
A42176}}}}

Task response messages have the following

format:

34

{(task source, task id, task state,

management state, on scheduleflag, (nom.

starting time, actual starting time, nom,

completion time, actual completion time],

last checkpoint, additional parameters},

(next task report in sameform}}

{ {SLE 1 ,34,ACTIVATED,NORMAL,0,

{19901101120000,19901101120100,

19901101120500,NULL},1,NULL}

}

This task status report acknowledges the receipt of the getjdata commandfor the shuttle.

At this point, other executejask commands are eligible to be issued by the SLE, assuming a type

2 or type 3 controller.

{EXECUTE, 35, { {Get-anc-lOl-data, 01},

get-anc-data, {PARTS, {AC4Q43, AQ972,

A42176})}}

{ {SLE1,34,COMPLETED,NORMAL,0,
{19901101120000,19901101120100,

19901101120500,199011011203001,2,

NULL},
{SLE 1 ,35,ACnVATED,NORMAL,0,
{19901101120400,NULL,

19901101120600,NULL},1,NULL}

}

This status report communicates the completion of the getjdata commandfor the shuttle and the

receipt of the getjdata commandfor anc.

{EXECUTE, 37, { {Make-shuttle- 1, 01},

make-shuttle, {PARTS, {AC4Q43, AQ972,
A42176}}}}

{ {SLE1,34,COMPLETED,NORMAL,0,
{19901101120000,19901101120100,

19901101120500,19901101120300},2,

NULL},
{SLEl,35,ACnVATED,NORMAL,0,
{19901101120400,19901101120400,

19901 101 120600,NULL }, 1,NULL}

,

{SLE 1 ,37 ,ACTIVATED,NORMAL,0,
{19901 101 120500,NULL,

19901101120700,NULL},1,NULL}}

35

{DROP_REPORT,34,NXJLL}

This command allows the subordinate to stop reporting on thefinished getjiata taskfor the shut-

tle.

I {81^135ACTIVATCD,NORMAL,0,

{19901101120400,19901101120400,

19901 101120600,NULL }, 1,NULL}

,

{SI^l,37,ACnVA'IED,NORMAL,0,
{19901101120500,NULL,

19901101120700,NU1X},1,NULL}

}

The SLE determines receipt oftheDROP REPORT request by the removal of the task information

related to that taskfrom the task status report.

Spontaneous reports are generated when taskfields change.

{ {SLEl,35,COMPLETED,NORMAL,l,
(19901101120400,19901101120400,

19901101120600,19901101120600},!,

NULL},
{SLEl,37,ACTIVATED,NORMAL,l,

{ 19901101120500,19901101120600,

19901101120700,NULL},1,NULL}

}

The workcell controller will issue a status reportfor each command receivedfrom the task super-

visor. In addition, status reports will be spontaneously generated by the workcell at the start, com-

pletion, and checkpoints ofa task.

{ {SLEl,35,COMPLETED,NORMAL,l,

{ 19901 101 120400, 19901 101 120400,

19901101120600,19901101120600},!,

NULL},
($LEl,37,ACnVATED,NORMAL,!,
(19901101120500,19901101120600,

19901101120700,NULL},2,

NULL}}

{DROP_REPORT,35,NULL}

This command allows the subordinate to stop reporting on thefinished getjiata taskfor anc.

{ { SLE 1 37,ACTIVATED,NORMAL, 1

,

{ 19901101120500,19901101120600,

19901101120700,NULL},2,

NULL)}

{ {SLE1,37,COMPLETED,NORMAL,0,
{19901101120500,19901101120600,

19901101120700,19901101120700),3,

NULL}}

37

Appendix D
Glossary

baseline configuration

1. The process of specifying the initial configuration of the system.

2. The result of the process in 1, (i.e., the specification of the initial configuration of the

system.)

capability index

A value which indicates whether a subsystem has all capabilities to be expected from the

baseline (initial) configuration or some different set of capabilities.

checkpoint

A step in a production plan where the manufacturing process may be halted in a safe man-

ner without damaging either the equipment or the workpiece and later replaced or re-

sumed.

configuration

The collection of resources in a given facility and their physical and logical relationships

to one another.

control entity

A decision making agent which directs the execution of tasks or executes tasks.

controller

1. A synonym for control entity.

2. The implementation of a control entity on a particular hardware platform which controls

a physical piece of equipment.

3. When prefixed by “equipment,” “workcell” or “shop”, the term refers to a particular

control entity, type of control entity, or implementation of control entity which performs a

precise function in a particular manner.

equipment level

The lowest level of control specified by the MSI architecture. A controller at this level has

an interface to its supervisor which conforms to the MSI architecture, but may have a non-

standard interface to its subordinates

executive

A component of a control entity responsible for directing the execution of assigned tasks.

guardian

That entity described in the MSI architecture which monitors and intervenes in a control

activity.

38

process plan

A specification of tasks, or operations, to accomplish a given goal— typically the manu-

facture of a product. In contrast to a production plan, a process plan serves as a template,

or recipe, for the accomplishment of the tasks.

production plan

A specification of tasks, or operations, to accomplish a specific goal, using specific re-

sources at specific times, (cf. process plan)

shop level

The highest level of control in the MSI architecture.

work element

1. A discrete activity for any control level in a manufacturing environment.

2. The collection of information which describes 1.

workcell level

An intermediate level of control which is responsible for the coordination of activities by

subordinates. The workcell level presents interfaces which comply with the MSI architec-

ture toward both its supervisor and subordinate controllers.

39

Reference List

Albus, J., Barbera, A., Nagel, R., “Theory and Practice of Hierarchical Control”, Twenty-third

IEEE Computer Society International Conference, Sept. 1981.

Catron, Bryan and Ray, Steven, “ALPS — A Language for Process Specification”, International

Journal of Computer Integrated Manufacturing, Vol. 4, number 3, 1991.

Libes, Don, “NIST Network Common Memory User Manual,” NISTIR 90-4233, PB9Q-183260/
AS, January 1990.

O’Halloran, D. R. and Reynolds, P. F.,”A Model for AMRF Initialization, Restart, Reconfigura-

tion and Shutdown”, NBS/GCR 88-546 May 23, 1986.

Rybczynski, S., et al. “AMRF Network Communications,” NISTIR 88-3816, pp. II-l - 11-9,

June 30, 1988.

Senehi, M. K., et al., “Manufacturing Systems Integration Initial Architecture Document”, NIS-

TIR, National Institute of Standards and Technology, Gaithersburg, MD, forthcoming.

40

NIST-1 14A U.S. DEPARTMENT OF COMMERCE
(REV. 3-90) NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY

BIBLIOGRAPHIC DATA SHEET

1. PUBUCATION OR REPORT NUMBER
;

i

2. PERFORMING ORGANIZATION REPORT NUMBER 1

i

1

3. PUBUCATION DATE

4. TITLE AND SUBTITLE I

!

Manufacturing Systems Integration Control Entity Interface Document
|

5. AUTHOR (S)

M.K. Senehi, S. Wallace, E. Wallace, S. Ray, E. Barkmeyer

6. PERFORMING ORGANIZATION (IF JOINT OR OTHER THAN NIST, SEE INSTRUCTIONS)

U.S. DEPARTMENT OF COMMERCE
NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY
GAITHERSBURG, MD 20899

7. CONTRACT/GRANT NUMBER

8. TYPE OF REPORT AND PERIOD COVERED

9. SPONSORINQ ORGANIZATION NAME AND COMPLETE ADDRESS (STREET. CITY. STATE, ZIP)

10.

SUPPLEMENTARY NOTES

11.

ABSTRACT (A 200-WORO OR LESS FACTUAL SUMMARY OF MOST SIGNIFICANT INFORMATION. IF DOCUMENT INCLUDES A SIGNIFICANT BIBUOGRAPHY OR
UTERATURE SURVEY, MENTION IT HERE.)

This document defines a set of interfaces for controllers to be incorporated
into an integrated manufacturing production planning and control_environment
that conforms to the NIST Manufacturing Systems Integration (MSI) architectural
model

.

This document is a companion document to the NIST Manufacturing Systems Integration
(MSI) Initial Architecture Document, which describes the MSI architectural model.

12.

KEY WORDS (6 TO 12 ENTRIES; ALPHABETICAL ORDER; CAPITAUZE ONLY PROPER NAMES; AND SEPARATE KEY WORDS BY SEMICOLONS)

Automated manufacturing; automation; Computer Integrated Manufacturing; control interfaces;
control systems; generic controller; hierarchical control; interface; state tables

13. AVAILABIUTY 14. NUMBER OF PRINTED PAGES

XXX UNUMITED
45

FOR OFHCIAL DISTRIBUTION. DO NOT RELEASE TO NATIONAL TECHNICAL INFORMATION SERVICE (NTIS).

ORDER FROM SUPERINTENDENT OF DOCUMENTS, U.S. GOVERNMENT PRINTING OFFICE,
15. PRICE

WASHINGTON, DC 20402. A03
cxx ORDER FROM NATIONAL TECHNICAL INFORMATION SERVICE (NTIS), SPRINGRELD,VA 22161.

ELECTRONIC FORM

